
SANDIA REPORT
SAND2001-8696
Unlimited Release
Printed February 2002

On the Convergence of Asynchronous
Parallel Pattern Search

T. G. Kolda, V. J. Torczon

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov

SAND2001-8696
Unlimited Release

Printed February 2002

On the Convergence of Asynchronous Parallel Pattern Search

Tamara G. Kolda∗

Computational Sciences and Mathematics Research Department
Sandia National Laboratories
Livermore, CA 94551–9217

Virginia J. Torczon†

Department of Computer Science
College of William & Mary

P.O. Box 8795
Williamsburg, VA 23187–8795

ABSTRACT

In this paper we prove global convergence for asynchronous parallel pattern search.
In standard pattern search, decisions regarding the update of the iterate and the
step-length control parameter are synchronized implicitly across all search directions.
We lose this feature in asynchronous parallel pattern search since the search along
each direction proceeds semi-autonomously. By bounding the value of the step-length
control parameter after any step that produces decrease along a single search direction,
we can prove that all the processes share a common accumulation point and that such
a point is a stationary point of the standard nonlinear unconstrained optimization
problem.

Keywords: asynchronous parallel optimization, pattern search, unconstrained opti-
mization, global convergence analysis

∗Corresponding author. Email: tgkolda@sandia.gov. This research was sponsored by the Math-
ematical, Information, and Computational Sciences Division at the United States Department of
Energy and by Sandia National Laboratories, a multiprogram laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United States Department of Energy under contract
DE-AC04-94AL85000.
†Email: va@cs.wm.edu. This research was funded by the Computer Science Research Institute at

Sandia National Laboratories and by the National Science Foundation under Grant CCR-9734044.

3

This page intentionally left blank.

4

1. Introduction. Asynchronous parallel pattern search (APPS) was introduced
in [5] as a way to solve in a parallel or distributed computing environment nonlinear
optimization problems of the form

min
x∈Rn

f(x), where f : Rn → R.(1.1)

In this paper, we prove that a subsequence of the sequence of iterates produced by
asynchronous parallel pattern search (APPS) converges to a stationary point of (1.1).

To do so, we build on the global convergence results for pattern search established
in [7, 10]. What distinguishes this analysis from the earlier work is the need to address
the new concerns introduced by the asynchronism. The analyses in [7, 10, 11] rely on
the fact that the more usual implementations of pattern search have complete knowl-
edge of information acquired during the course of the search when making decisions
about how to proceed. In contrast, APPS partitions out search directions and, to
eliminate idle time, eliminates the close synchronization of the search. This means
that the search along the single direction governed by an individual process is allowed
to proceed semi-autonomously to achieve good computational performance, as our
tests in [5] demonstrate. Even more important for the purposes of the analysis is the
fact that each process is allowed to make its own decision about how to proceed based
only on the information currently available to it—even though that information may
not be up-to-date with respect to the other processes. Instead, information between
processes is exchanged intermittently so that eventually all processes learn of every
reasonable candidate for the minimizer. The only assumption we make is that infor-
mation about success (i.e., a decrease in the value of f) on one process reaches all
other processes in a finite amount of time. We make no assumption about the order
in which such information is received.

The critical issue for our analysis is that APPS makes decisions about the step
lengths and about updating the best point in the absence of complete information
about the progress of the searches along the other directions. Therefore, at any given
time in the search, neither the value of the step-length control parameter, nor the value
of the best point, may be the same across participating processes. Another minor
aspect in which we differ from previous analysis is that we do not fix the contraction
and expansion parameters. These complications require significant extensions to the
analyses found in [7, 10, 11]. The key to safeguarding the overall outcome of the
search lies in bounding the values the step-length control parameter is allowed to
assume after any step that produces decrease on f (i.e., after a successful step).

In §2 we describe a synchronous variant of parallel pattern search and use it
to motivate our asynchronous parallel pattern search algorithms. In §3 we outline
APPS and introduce the extensive notation required for our analysis. We hasten to
add that most of this bookkeeping, which is essential to our analysis, is not required
in practice. A full treatment of the practical design and implementation of APPS is
deferred to [5]. Since the notational overhead required for the analysis is significant, we
refer interested readers to [6] for an example of APPS applied to a simple function,
an illustration of the associated notation, and a discussion of those features of the
asynchronous algorithms that most complicate the analysis.

In this paper, we concentrate on the analysis, which is broken into four parts.
First, in §4, we verify the algebraic structure of the iterates. Second, in §5, we show
that the subset of time steps at which changes occur in either the best point or the
step-length control parameter is infinite. Next, in §6, we show that a subsequence
of the sequence of step-length control parameters goes to zero. Finally, in §7, we

5

show that there exists a common accumulation point for all processes and that this
accumulation point has a zero gradient.

We close with some remarks regarding further extensions that could be made to
the analysis.

Standard notation. We denote by R, Q, and Z the sets of real, rational, and
integer numbers, respectively.

We use pow(Λ, `) to indicate that Λ is raised to the power `, so that pow(Λ, `) ≡
Λ`. We adopt this notational convention to eliminate any ambiguities that could arise
when we introduce superscripts for use as indices.

2. PPS. We start by considering a synchronous version of parallel pattern search
(PPS) to clarify the notation and motivate APPS.

We assume that we have p independent processes, each of which is generating a
sequence of trial points. We denote the set of processes as

P = {1, . . . , p}.

We work with a finite set of search directions

D = {d1, . . . , dp}, where di ∈ Qn for each i ∈ P.

The vectors in the set D must form a positive spanning set for Rn. To each process
i ∈ P we assign the constant search direction di ∈ D. We constrain the search
directions to the rationals to ensure that all iterates lie on a rational lattice, which, as
we see in §4, is required for the proof of Theorem 4.2. We denote by xki the best point
(i.e., one with the least function value) known by process i at iteration k. We denote
by ∆k

i the scalar that controls the length of the step taken along the direction di to
construct a new trial point at iteration k. For the synchronous version of pattern
search, the subscript i on x and ∆ is redundant since the synchronization ensures
that the values of xki and ∆k

i are equivalent for all i ∈ P; however, this subscript
becomes meaningful in the asynchronous case, so we introduce the notation here for
comparison.

Each process i ∈ P constructs a trial point by computing

xki + ∆k
i di(2.1)

and then evaluates f at this point. After the evaluation has finished on process
i, process i broadcasts the result to all the other processes in P and then waits
until it has received results from all the other processes in P. This is the point of
synchronization; no further action can be taken on process i until all the results from
all the other processes in P are known. Once all p results are known to all p processes,
a decision is made simultaneously as to which point is now best, and then xki and ∆k

i

are updated to produce xk+1
i and ∆k+1

i . We assume that any ties are broken in a way
that ensures all processes arrive at an identical choice for the new best point.

Because it is convenient for what follows, we replace the notion of iterations with
the notion of occurrences at certain time steps as measured by a global clock like that
used in other asynchronous convergence proofs; c.f. [2]. Let the infinite set

T = {0, 1, 2, . . .}

be the index of time steps. We assume that the time steps are of fine enough resolution
that at most one event (i.e., a change in the best known point and/or the value of the

6

step-length control parameter) occurs per time step, per process. In the synchronous
case, iterations can be thought of as coarse time steps.

Using our global clock, we can represent the consequence of a single iteration, say
k, for a single process, say i ∈ P, on a timeline as illustrated in Figure 2.1. At time

. . .
t0

iteration k

. . .
t1

i finishes
f(x

t0
i +∆

t0
i di)

. . . -
t2

iteration k + 1

-�
i idle

Fig. 2.1. Timeline for synchronous pattern search for process i

step t0, process i starts a function evaluation at its trial point given by

xt0i + ∆t0
i di.

Observe that the notation introduced in (2.1) has changed. Now the time step re-
places the iteration number in the superscript and, from now on, we use time steps
as our indices. At time step t1, process i finishes its evaluation of f(xt0i + ∆t0

i di)
and broadcasts its result to the remaining processes. We assume that at some time
step t2, all processes in P have received the results from all other processes, so each
independently decides on the point that is now best. Since each process knows the
results from all p processes in P, and since ties are broken in a consistent fashion, all
p processes will arrive at the same conclusion as to which point is now best. Each
process then updates its copies of the best point and the step-length control param-
eter to obtain xt2i and ∆t2

i . Iteration k + 1 then begins. Note that from time step t1
until time step t2, process i is idle.

For process j ∈ P, j 6= i, the procedure differs in only two respects. First, the
trial point is calculated using a different search direction dj ∈ D to yield

xt0j + ∆t0
j dj .

Recall that xt0j = xt0i and ∆t0
j = ∆t0

i due to the synchronization. Second, we have
no guarantee that the evaluation of f at the trial point will take the same number of
time steps on process j as it did on process i. At one extreme is the possibility that
the evaluation of f takes only a single time step, which would give us the scenario
illustrated in Figure 2.2, where t̂1 denotes the time step at which the function evalu-
ation on process j finishes. In this case, t̂1 = t0 + 1 and process j is idle from time
step t0 + 1 to time step t2.

. . .
t0

iteration k

t̂1 = t0 + 1

j finishes
f(x

t0
j +∆

t0
j dj)

. . . -
t2

iteration k + 1

-�
j idle

Fig. 2.2. Timeline for synchronous pattern search for process j

At the other extreme, we have the scenario in Figure 2.3, so that there is effectively no
idle time on process j. Note that in this case we have assumed that the communication
is instantaneous—our theory allows for this possibility as well as the possibility that
communication may take up to a finite number of time steps.

7

. . .
t0

iteration k

. . . -
t̂1 = t2

j finishes f(x
t0
j +∆

t0
j dj)

iteration k+1

Fig. 2.3. Alternate timeline for synchronous pattern search for process j

We stress that, even though the time required to finish a function evaluation
may vary from process to process and from iteration to iteration, the synchronization
ensures that, across all processes, iteration k begins at time step t0 while iteration
k + 1 begins at time step t2.

The goal of asynchronous parallel pattern search is to eliminate the synchroniza-
tion since it can potentially waste CPU cycles, as our example in Fig. 2.1 demonstrates
and our experimental evidence in [5] confirms. As we see in the next section, APPS
allows each process to update its xti and ∆t

i independently whenever a function eval-
uation finishes and/or a new message arrives.

3. APPS. Like parallel pattern search, APPS [5] uses p processes collectively
to solve (1.1). Each process is in charge of searching along a single search direction
from its best known point, and the best known point and the value of the step-length
control parameter are varied according to internal and external events. The difference
is that individual processes in APPS no longer wait for information from the other
processes before making a local decision as to the next best point. Once the decision is
made, the process then updates its record of the best point and the step-length control
parameter, constructs a new trial point, and immediately begins a new evaluation of
the objective function.

Because we no longer have synchronization after every function evaluation, de-
cisions now depend on the time step at which they are made. Therefore, we index
according to the global clock described previously. We then define the following for
each process i ∈ P and time step t ∈ T :

xti = the best known point at time step t for process i and
∆t
i = the step-length control parameter at time step t for process i.

In APPS, the current values of the best point and the step-length control parameter
can be different across processes at the same time step t ∈ T . Therefore, the subscript
i is no longer redundant, and it is possible that xti 6= xtj and/or ∆t

i 6= ∆t
j . On a single

process i ∈ P, we are guaranteed that at any time step t ∈ T , f(xt+1
i) ≤ f(xti).

The values of xti and ∆t
i are not necessarily changed at every time step. Let

Ti = the set of time steps at which xti and/or ∆t
i is changed,(3.1)

so that Ti ⊆ T . For each process i ∈ P we categorize each time step t ∈ T as either
successful or unsuccessful. We also need to observe further distinctions within each
of these two categories, which we detail in §3.2 and §3.3.

3.1. Assumptions. As a practical matter, we assume that at the start of the
search the best point and the value of the step-length control parameter are equal for
all i ∈ P; that is, there exist x0 ∈ Rn and ∆0 ∈ R, ∆0 > 0 such that

x0 = x0
1 = x0

2 = · · · = x0
p and ∆0 = ∆0

1 = ∆0
2 = · · · = ∆0

p.(3.2)

We further assume that the value f(x0) is known by all processes.
8

As is standard for pattern search analysis, we assume

L(x0) = { x ∈ Rn : f(x) ≤ f(x0) } is bounded.(3.3)

We assume that D, the set of search directions, is fixed and finite. We also assume
that the vectors in D form a positive spanning set for Rn.

An important addition for our analysis is the assumption that the initial step-
length control parameter is constrained by

0 < ∆min ≤ ∆0 ≤ ∆max < +∞,(3.4)

where ∆min and ∆max are constants used to bound ∆ after any step that produces
decrease on f .

We assume that both the maximum time for a function evaluation and the max-
imum time for a single communication are finite; we quantify those as

η = maximum number of time steps for evaluating f at a given x and(3.5)
γ = maximum number of time steps for communicating a message.(3.6)

We assume that the minimum time for evaluation and communication are one and
zero time steps, respectively.

3.2. Successful time steps. On process i, we characterize any time step t ∈
T at which we identify a point with a strictly lower value of f as successful. We
further distinguish between internal and external successes depending on whether
the information that identified improvement in the value of f was computed locally
or received in the form of a message from another process; we detail these distinctions
in §3.2.1 and §3.2.2.

In APPS, we must pay special attention to points that produce equivalent values
of f since we must break ties in a consistent fashion. This becomes particularly critical
in the asynchronous case since equivalent function values are likely to become known
to each process at different time steps and perhaps in reverse order. To ensure the
convergence of the overall search, we must ensure that when faced with equivalent
function values, every one of the participating processes arrives at the same decision as
to which of the points known to produce the same function value should be considered
“best.” Thus, we may have reason to classify some time steps as successful, even when
they do not strictly improve the value of f . We describe such situations in more detail
in §3.2.2.

3.2.1. Internal successes. The first type of successful time step is an internal
success, which can occur at the completion of a function evaluation. Suppose that on
process i ∈ P a function evaluation starts at some time step, say t0, (using xt0i and
∆t0
i to generate the trial point) and finishes at some later time step, say t1. We can

represent this on a timeline as in Figure 3.1.

. . .
t0

i starts
f(x

t0
i +∆

t0
i di)

. . . -
t1 − 1 t1

i finishes
f(x

t0
i +∆

t0
i di)

-�
≤ η

Fig. 3.1. Timeline for asynchronous pattern search on process i

9

The time step t1 is considered an internal success when the following condition is
satisfied:

f
(
xt0i + ∆t0

i di
)
< f

(
xt1−1
i

)
.(3.7)

We compare f
(
xt0i + ∆t0

i di
)

to f
(
xt1−1
i

)
, rather than to f

(
xt0i
)
, since it is possible

that xt1−1
i 6= xt0i due to an external success, which is described in the next section.

When (3.7) is not satisfied, the time step is unsuccessful, as described in §3.3. Other-
wise, when (3.7) is satisfied, we say that time step t1 ∈ Ii, where

Ii = the set of internal successful time steps for process i.

We then update xi as follows:

xt1i = xt0i + ∆t0
i di;

in other words, xt1i is set to the point that produced the best known function value.
Further, we update the step-length control parameter ∆i as follows:

∆t1
i = λt1i ∆t0

i ,

where λt1i is the expansion parameter for the update at time step t1. Before we define
the expansion parameter for the update, we first define the integer constant

Λ ∈ {2, 3, . . .},(3.8)

which controls the scaling of all steps. Returning to the choice of λti, we require it to
satisfy two conditions. The first condition is that λti be a nonnegative integer power
of Λ; i.e.,

λti = pow(Λ, kti)(3.9)

for some

kti ∈ {0, 1, 2, . . .}.

Note that since Λ > 1 and kti is nonnegative, λti ≥ 1. The second condition on the
choice of λti is that the new step-length control parameter must satisfy

0 < ∆min ≤ ∆t
i ≤ ∆max < +∞,(3.10)

where ∆min and ∆max are the same constants used in (3.4). The bounds on ∆t
i

implicitly restrict the value of kti that may be chosen in (3.9). Note that (3.10)
applies only to updates associated with successful time steps.

Once xi and ∆i are updated, process i broadcasts the new best point, its function
value, and the new step-length control parameter to all the other processes in P for
them to consider as a candidate for new best. Process i then proceeds with the
construction and evaluation of xt1i + ∆t1

i di.

3.2.2. External successes. The other type of successful time step is an external
success. Suppose that an internal success occurs on process i at time step t1, as just
described in §3.2.1. Then at some time step t2 ≥ t1, process j, j 6= i, receives the
broadcast from process i with the new best point found by process i, along with its

10

. . .
t0

i starts
f(x

t0
i +∆

t0
i di)

. . .
t1

i finishes
f(x

t0
i +∆

t0
i di)

. . . -
t2 − 1 t2

j receives from i

f(x
t0
i +∆

t0
i di)

-�
≤ γ

Fig. 3.2. Timeline for asynchronous pattern search message from process i to process j

associated function value and step-length control parameter. We assume that process
j can immediately assimilate the newly received information even if it is currently
in the midst of a function evaluation. In the implementation described in [5], we
achieve this by executing the function evaluation as a separate thread or process. We
represent this example of an external success on the timeline in Figure 3.2.

There are three possibilities when process j receive a message from process i: the
function value associated with the incoming point is either better, equal, or worse
than the function value of the best point at the previous time step. Certainly, if
f
(
xt1i
)
< f

(
xt2−1
j

)
holds, then process j now has a new best point, received from

the external process i, and it should update its local values for the best point and the
step-length control parameter in light of this new information. However, if f

(
xt1i
)
>

f
(
xt2−1
j

)
, process j should simply discard the new information since xt2−1

j is clearly
better than xt1i .

The interesting question is what to do when f
(
xt1i
)

= f
(
xt2−1
j

)
. To ensure the

robustness of the search procedure, we define a comparison operator ≺. Given any
x, y, z ∈ Rn, ≺ denotes a comparison that satisfies the following two conditions:

1. x ≺ y and y ≺ z implies x ≺ z, and
2. x = y (i.e., neither x ≺ y nor y ≺ x) only if x[i] = y[i] for i = 1, . . . , n where

the notation x[·] denotes the ith entry of the vector x.
We can use any definition for the comparison operator≺ so long as it satisfies these two
conditions. For example, we may use the following ordered elementwise comparison.
We say x ≺ y if there exists j ∈ {1, . . . , n} such that x[j] < y[j] and x[i] = y[i] for
i = 1, . . . , j − 1. Given a way to resolve ties, we are now ready to define an external
success.

The time step t2 is considered an external success if either

f
(
xt1i
)
< f

(
xt2−1
j

)
or f

(
xt1i
)

= f
(
xt2−1
j

)
and xt1i ≺ x

t2−1
j .(3.11)

If (3.11) is satisfied, we then say that t2 ∈ Ej where

Ej = the set of external successful time steps for process j.

The updates are

xt2j = xt1i

and

∆t2
j = ∆t1

i .

We assume that the receipt of an external message does not affect the status of a
function evaluation that may be executing on the receiving process.

11

3.2.3. Additional comments on what constitutes a success. Now that we
have defined what constitutes both an internal and an external success, we define

Si = Ii ∪ Ei = the set of successful time steps for process i.

We emphasize again that although internal successes require strict decrease in
the function value as seen in (3.7), external successes relax the requirement of strict
decrease and instead use the comparison operator ≺ to break ties, as shown in (3.11).
This ensures that all processes agree on the best point even when different points
generated by different processes have the same function value.

3.3. Unsuccessful time steps. Any time step that is not successful is classified
as unsuccessful. We let the set

Ui = T \ Si,

denote the unsuccessful time steps on process i ∈ P. There are two types of unsuc-
cessful time steps.

3.3.1. Contractions. Consider again the function evaluation on process i that
starts at time step t0 and finishes at time step t1, as shown in Figure 3.1. We say
that time step t1 is a contraction if (3.7) is not satisfied and xt1−1

i = xt0i ; i.e., there
is no reduction in the function value and xi has not been updated since time step t0
(which also means that ∆t1−1

i = ∆t0
i). In terms of time steps, t1 6∈ Ii and t 6∈ Ei for

any t ∈ {t0 + 1, . . . , t1 − 1}.
In this case, process i is required to reduce the value of its step-length control

parameter ∆t1−1
i before continuing the search along its direction di. This means that

t ∈ Ti since ∆t1−1
i , though not xt1−1

i , is changed. More specifically, we say that t1 ∈ Ci
where

Ci = the set of contraction time steps for process i.

Note that Si ∩ Ci = ∅ since Ci ⊆ Ui.
We update the step-length control parameter ∆i as follows:

∆t1
i = θt1i ∆t1−1

i ,

where θt1i is the contraction parameter at time step t1. The choice of the contraction
parameter θti is subject to the following condition, using the same Λ as in (3.9),

θti = pow(Λ, `ti),(3.12)

for some

`ti ∈ {−1,−2,−3, . . . , `min},(3.13)

where `min is a finite integer constant. Note that (3.13) implies that

θti ∈ [θmin, θmax] ⊂ (0, 1), where θmin = pow(Λ, `min), θmax = pow(Λ,−1).(3.14)

12

3.3.2. The trivial case. The final possibility is that no changes to either xti or
∆t
i occur on process i for a given time step t; in other words, t 6∈ Ti. This situation

could occur for several reasons.
One possibility would be that process i is still evaluating f at a trial point con-

structed at some time step t0 < t and that evaluation does not finish during time step
t. Thus, t 6∈ Ii and t 6∈ Ci.

A further possibility is that no external candidate arrives from process j, j 6= i,
or an external candidate does arrive, but it is immediately discarded since its function
value does not improve upon f(xt−1

i). Thus, t 6∈ Ei.
A last possibility is that at time step t, process i does finish evaluating f at a trial

point constructed at some time step t0 < t but the function value does not improve
upon f(xt−1

i), so t 6∈ Ii. However, before assigning t to Ci, we must verify that
xt−1
i = xti. If xt−1

i 6= xti, that means that at least one external success occurred on
process i at some time step t̂ ∈ {t0 +1, . . . , t−1}. Let t̂ = max{{t0 +1, . . . , t−1}∩Ei}.
In this case, since we have already recorded the external success at time step t̂, we
construct a new trial point without further changes to xt̂i or ∆t̂

i and initiate a new
function evaluation. Thus, while t̂ ∈ Ei, t ∈ Ui \ Ci.

3.4. Multiple decisions in one time step. We allow for the possibility that
multiple candidates for the best point may be considered simultaneously at time step
t ∈ T if, for instance, multiple messages have arrived from external processes or there
is both an internal candidate as well as one or more external candidates to consider.

3.5. Identifying the source of a change. If a function evaluation finishes at
time step t1, a new one is started at time step t1 using the values xt1i and ∆t1

i —at
least one of these values is guaranteed to have changed since time step t0 from either
an internal success, an external success, or a contraction.

To identify where a change to xti, and possibly ∆t
i, was generated (i.e., on which

process) and at what time step the corresponding function evaluation started and
finished, for each i ∈ P and for all t ∈ Si we define the following generating functions:

ωi(t) = the generating process index for the update at time step t on process i,

τi(t) =
the time index for the initiation of the function evaluation that
produced the update at time step t on process i, and

νi(t) =
the time index for the completion of the function evaluation that
produced the update at time step t on process i.

Here

ωi(·) : Si → P, τi(·) : Si → T , νi(·) : Si → T , and 0 ≤ τi(t) < νi(t) ≤ t.

For our example of an internal success on process i, so that t1 ∈ Ii, as illustrated
in Figure 3.1, we have ωi(t1) = i, τi(t1) = t0, and νi(t1) = t1. In fact, ωi(t) = i and
νi(t) = t for all t ∈ Ii.

For our example of an external success on process j, so that t2 ∈ Ej , as illustrated
in Figure 3.2, we have ωj(t2) = i, τj(t2) = τi(t1) = t0, and νj(t2) = νi(t1) = t1.

The generating functions play an important role in the proofs of Lemma 4.1,
Theorem 4.2, Lemma 6.4, and Corollary 6.5.

13

3.6. The definitions for xti and ∆t
i. For every t ∈ T , t > 0, the best point xti

for process i ∈ P is defined to be:

xti =

{
x
τi(t)
ωi(t)

+ ∆τi(t)
ωi(t)

dωi(t), if t ∈ Si, and
xt−1
i , otherwise.

(3.15)

Recall that we initialize the procedure with x0 as shown in (3.2). Thus, xti is changed
on process i ∈ P only at successful time steps t ∈ Si.

Changes in ∆t
i must occur at contraction time steps and may occur at successful

(internal or external) time steps. Correspondingly, for every t ∈ T , t > 0, the step-
length control parameter ∆t

i for process i ∈ P is defined to be:

∆t
i =

λ
νi(t)
ωi(t)

∆τi(t)
ωi(t)

, if t ∈ Si,
θti∆

t−1
i , if t ∈ Ci, and

∆t−1
i , otherwise.

(3.16)

Again, the initialization is as in (3.2) and we assume ∆0 satisfies (3.4). Recall λti ≥ 1 is
the expansion parameter defined in (3.9) and θti ∈ (0, 1) is the contraction parameter
defined in (3.12).

Now that we have precise definitions for xti and ∆t
i, we can show that for every

t ∈ T , across all i ∈ P, xti lies on a rational lattice. This, in turn, forms the basis for
the theoretical results that follow.

4. The algebraic structure of the iterates. As complex as the formulation
for xti given in (3.15) may seem, we observe that we can, in fact, write any xti as a
linear combination of the search directions (translated by x0). Since APPS allows ∆
to increase, we rely on the algebraic structure underlying the sequences {xti}, for all i ∈
P, to guarantee step-length control. Thus we want a result equivalent to Theorem 3.2
in [10]. However, the asynchronism we have introduced in APPS complicates the
arguments since now, for some subset of the t’s in T , the xti residing on process i
may be the result of an external success—i.e., a point produced by a search along
direction dj on process j, where j 6= i. Thus we need to be able to argue that the
algebraic structure found in the synchronous case (i.e., Theorem 3.2 in [10]) has been
preserved in the asynchronous case. In order to do so, we introduce yet more notation
in Lemma 4.1 and then go on to prove the equivalent results.

The reader may wish to consider the example given in [6], which helps establish
the definitions given in §3, including those for the many sets we have introduced to
track the progress of the search. Also, [6] illustrates and discusses those features of
the asynchronous algorithm that complicate the analysis.

We are now ready to prove, in the following lemma, that we can write any xti as
a linear combination of the search directions (translated by x0).

Lemma 4.1. For any i ∈ P and any t ∈ T , there exist sets Îj(i, t) ⊆ Ij for each
j ∈ P such that

xti = x0 +
∑
j∈P

δj(i, t) dj with δj(i, t) =
∑

t̂∈Îj(i,t)

∆τj(t̂)
j ,(4.1)

where δj(i, t) = 0 if Îj(i, t) = ∅.
Proof. We prove this lemma by induction on t. For any i ∈ P, the case for t = 0

is trivial since x0
i = x0 by (3.2). Simply choose Îj(i, 0) = ∅ for each j ∈ P.

14

Now consider the case for general t for any i ∈ P. First consider t ∈ Ui, in which
case (3.15) gives us xti = xt−1

i . From the induction hypothesis, we have

xt−1
i = x0 +

∑
j∈P

δj(i, t− 1) dj with δj(i, t− 1) =
∑

t̂∈Îj(i,t−1)

∆τj(t̂)
j .

In this case, we simply choose Îj(i, t) = Îj(i, t− 1) for all j ∈ P to yield (4.1).
On the other hand, consider t ∈ Si. From (3.15), we have

xti = x
τi(t)
ωi(t)

+ ∆τi(t)
ωi(t)

dωi(t).

The assumption that the minimum time for a function evaluation is one time step
ensures that τi(t) < t for all i ∈ P. Thus, from the induction hypothesis, we can
rewrite the first term as

x
τi(t)
ωi(t)

= x0 +
∑
j∈P

δj(ωi(t), τi(t)) dj with δj(ωi(t), τi(t)) =
∑

t̂∈Îj(ωi(t),τi(t))

∆τj(t̂)
j .

By definition, we also have τi(t) = τωi(t)(νi(t)) and νi(t) ∈ Iωi(t). Therefore, choosing

Îj(i, t) =
{
Îj(ωi(t), τi(t)) ∪ {νi(t)} for j = ωi(t) and
Îj(ωi(t), τi(t)) for j 6= ωi(t)

yields (4.1).
The purpose of the sets Îj(i, t) is to track, for each j ∈ P, which subset of the set

of time steps that produced internal successes on process j led to the xti residing on
process i at time step t.

Now that we have taken a closer look at xti, let us do the same for ∆t
i. In this

case, it is more straightforward. From (3.16), (3.12), and (3.9), we see that for any
i ∈ P and for any t ∈ T we can express any ∆t

i as a multiple of an integer power of
the Λ from (3.8) times the ∆0 from (3.4). Let Γti denote that integer power so that

∆t
i = pow(Λ,Γti) ∆0, Γti ∈ Z.(4.2)

Using our observations on xti, obtained from Lemma 4.1, and on ∆t
i, obtained

from (4.2), we now state and prove Theorem 4.2, which is our analog of Theorem 3.2
from [10].

Theorem 4.2. Let i ∈ P and Γ ∈ Z. For any t ∈ T such that

Γ ≤ min { Γτi(t̂)
i : t̂ ≤ t, t̂ ∈ Ii, i ∈ P },

where Γti is as defined in (4.2), there exists ζj(i, t,Γ) ∈ Z for each j ∈ P such that

xti = x0 + pow(Λ,Γ) ∆0
∑
j∈P

ζj(i, t,Γ) dj .(4.3)

Further, xti lies on the rational lattice defined by integer multiples of the elements of
D that are scaled by pow(Λ,Γ) ∆0 and translated by x0. This lattice is denoted by
G(D,Λ,Γ,∆0, x0).

Proof. First we make an observation about any ∆τi(t̂)
i such that i ∈ P, t̂ ≤ t, and

t̂ ∈ Ii. From (4.2), we have

∆τi(t̂)
i = pow(Λ,Γτi(t̂)

i − Γ) pow(Λ,Γ)∆0.

15

We further observe that (3.8) ensures that Λ ∈ Z; (4.2) ensures that Γτi(t̂)
i ∈ Z; and

the assumptions placed on Γ ensure that Γ ∈ Z and Γ ≤ Γτi(t̂)
i . Combining these

observations, we are ensured that

pow(Λ,Γτi(t̂)
i − Γ) ∈ Z.

In Lemma 4.1 we saw that we could write any xti as the sum of x0 plus a linear
combination of the search directions. Using the definition of Îj(i, t) from Lemma 4.1,
we choose

ζj(i, t,Γ) =
∑

t̂∈Îj(i,t)

pow(Λ,Γτi(t̂)
i − Γ) =

δj(i, t)
pow(Λ,Γ) ∆0

.

Clearly, ζj(i, t,Γ) ∈ Z. Equation (4.3) then follows immediately from (4.1). The final
statement follows from the fact that the search directions are strictly rational and any
set of rational numbers can be scaled to the integers.

The importance of Theorem 4.2 will become apparent in Lemma 6.4, where we
show that some subsequence of the step-length control parameters must go to zero.

5. The subset of time steps at which changes occur is infinite. Before
we proceed to the proof of global convergence, we revisit the set Ti, which we first
defined in (3.1), and show that it must be infinite. A review of (3.15) and (3.16) leads
to an alternate definition in terms of the subsets Si and Ci:

Ti = Si ∪ Ci.(5.1)

Lemma 5.1. Ti is infinite.
Proof. Each function evaluation takes at most η time steps and a new function

evaluation is started at the conclusion of each function evaluation. Since T is infinite,
there are infinitely many function evaluations. Recalling the discussion in §3.5, for
each function evaluation we are guaranteed that either an external successful update
took place during the function evaluation or either an internal successful update or a
contraction took place at the conclusion of the function evaluation. So, there must be
at least one update to xi and/or ∆i for every function evaluation and, hence, there
are infinitely many updates.

This fact about Ti plays a role in the analysis ahead.

6. A subsequence of the step-length control parameters goes to zero.
The first part of the proof of convergence for standard pattern search convergence
analysis [10] is showing that the step-length control parameter ∆ goes to zero; i.e.,

lim inf
t→+∞

∆t = 0.

In this section, we aim to show an equivalent result, but we now have p semi-
independent sequences of ∆ to consider. Given this complication, the basic outline
for our arguments is as follows:

1. If the number of successful time steps for some process is finite, showing that
the sequence of step-length control parameters goes to zero is trivial. So, we eliminate
this case first in Lemma 6.1.

2. Using Lemma 6.1, we then show, in Lemma 6.2 and Corollary 6.3, that either
every process has a set of successful time steps that is finite or none do. From this

16

point forward, we then need only concern ourselves with the case where the number
of successful time steps is infinite.

3. Lemma 6.4 is a key result. We show that some subsequence of the set of all
step-length control parameters (indexed over all processes and all time steps) must
go to zero. This result relies on the fact that every xti lies on a rational lattice.

4. We narrow the scope in Corollary 6.5 to show that a subsequence of step-length
control parameters converges to zero on one process i ∈ P.

5. Before we can extend this result to the remaining processes, we introduce
some new definitions that help us discover what is happening between successful time
steps on any process j ∈ P, j 6= i. In Lemma 6.6, we conclude that the lim sup of
the number of time steps between successes on a single process goes to +∞ in these
cases.

6. We now can tie together the actions across processes to say, in Lemma 6.7,
that every process must have a subsequence of step-length control parameters that
goes to zero.

7. Combining all these results into Theorem 6.8, we see that whether or not
the number of successful time steps is infinite, every process has a subsequence of
step-length control parameters that goes to zero.

Now that we have an overall picture of the argument, we begin by showing that
for any process i which has only finitely many successful time steps, the sequence of
step-length control parameters goes to zero.

Lemma 6.1. If Si is finite for some i ∈ P, then

lim
t→+∞

∆t
i = 0.

Proof. Let t0 = max { t : t ∈ Si }. Then, by (3.16), for any time step t ∈ T such
that t > t0, the time step is either a contraction or nothing happens. From (5.1), we
have Ti = Si ∪Ci, and Lemma 5.1 assures us that Ti is infinite. Since, by assumption,
the set Si is finite, we conclude that the set Ci must be infinite. Hence there are
infinitely many contractions after time step t0. Therefore, the sequence {∆t

i}
+∞
t=t0 is

decreasing and bounded below by zero. Finally, (3.14) guarantees that the contraction
parameter θti ≤ θmax < 1, which enforces a fraction of decrease at each contraction.
We can therefore conclude that the sequence {∆t

i}
+∞
t=t0 converges to zero. Hence, the

claim.
In the next lemma, we show that if one process has infinitely many successful

time steps, then every process must have infinitely many successful time steps.
Lemma 6.2. If Si is infinite for some i ∈ P, then Sj is infinite for all j ∈ P.
Proof. Suppose not; that is, suppose there exists k ∈ P, k 6= i, such that Sk is

finite. Let t0 = max { t : t ∈ Sk } which implies that xt0k is the best point known
by process k over all t ∈ T . The point xt0k is considered by process i at some later
time step t1 ≤ t0 + γ, where γ is defined in (3.6). Since Si is infinite, xt0k , whether
initially accepted or rejected at time step t1, is improved upon at some later time step
t2 with t2 > t1; together, (3.5) and (3.6) guarantee that t2 is finite. The point xt2i
must, in turn, be considered by process k at a later time step t3 ≤ t2 + γ. Since xt2i
is an improvement over xt0k , we must have t3 ∈ Sk; but this contradicts t0 being the
maximum t ∈ Sk.

The immediate corollary is that if any process has only finitely many successful
time steps, then every process has only finitely many successful time steps.

Corollary 6.3. If Si is finite for some i ∈ P, then Sj is finite for all j ∈ P.
17

From Lemma 6.1 and Corollary 6.3, the case for the convergence of the step-
length control parameters to zero is trivial when there are finitely many successful
time steps. The remainder of this section concentrates on the case where there are
infinitely many successful time steps on each process.

The next lemma shows there is a subsequence of step-length control parameters
(indexed over all processes) that converges to zero.

Lemma 6.4. Suppose Sj is infinite for all j ∈ P, then there exists i ∈ P such
that

lim inf
t→+∞
t∈Si

∆τi(t)
ωi(t)

= 0.

Proof. Suppose not. Then there exists ∆∗ > 0 such that

∆τj(t)

ωj(t)
≥ ∆∗ for all j ∈ P and t ∈ Sj .

Choose Γ∗ ∈ Z such that pow(Λ,Γ∗) ∆0 ≤ ∆∗. We are guaranteed that such a
Γ∗ exists since ∆∗ is strictly positive. With this choice of Γ∗, Theorem 4.2 guarantees
that (4.3) holds for every choice of t ∈ T , thus every xtj lies on the translated rational
lattice G(D,Λ,Γ∗,∆0, x0).

Observe that each lattice point in G(D,Λ,Γ∗,∆0, x0) can be considered successful
at most once by each process. Consider process k ∈ P. Recall that Sk = Ik ∪ Ek and
a successful point must satisfy either (3.7) or (3.11). In either case, if f(xt2k) < f(xt1k),
then clearly xt1k 6= xt2k . The only other possibility is that t2 ∈ Ek with f(xt2k) = f(xt1k),
in which case we must have xt2k ≺ xt1k so that, once again, xt1k 6= xt2k . We conclude,
therefore, that for any process k ∈ P, we cannot have t1, t2 ∈ Sk with t1 < t2 such
that xt1k = xt2k .

On the other hand, every successful point must lie in L(x0), which is assumed to
be bounded by (3.3). The intersection of the bounded set L(x0) with the translated
integer lattice G(D,Λ,Γ∗,∆0, x0) is finite.

Since any successful point must be in the finite set L(x0)∩G(D,Λ,Γ∗,∆0, x0) and
no point is successful more than once for each process j ∈ P, it follows that Sj must
be finite. But this contradicts the assumption that Sj is infinite for all j ∈ P. Hence,
the claim.

An immediate corollary to the preceding lemma is that there is some process
which has a subsequence of step-length control parameters that converges to zero.

Corollary 6.5. Suppose Sj is infinite for all j ∈ P, then there exists i ∈ P
such that

lim inf
t→+∞

∆t
i = 0.(6.1)

Proof. By Lemma 6.4, there exists i ∈ P and S̄i ⊆ Si such that

lim
t→+∞
t∈S̄i

∆τi(t)
ωi(t)

= 0.

For each j ∈ P, define S̄ij = {t ∈ S̄i : ωi(t) = j}, so
⋃p
j=1 S̄ij = S̄i. Since S̄i is

infinite, there exists at least one k such that S̄ik is infinite. So,

lim
t→+∞
t∈S̄ik

∆τi(t)
k = 0.

18

Hence, the claim.
We need to show that a subsequence of step-length control parameters is going

to zero for every process. In order to do so, we must first introduce some definitions
and an additional lemma.

For each process i ∈ P, we can decompose the set of unsuccessful time steps (i.e.,
t 6∈ Si) into contiguous blocks as follows:

Ui = T \ Si = Ui1 ∪ Ui2 ∪ · · · ∪ UiN ,(6.2)

where N may be +∞, each Ui` is a contiguous index block (e.g., Ui` = {3, 4, 5, 6}),
and any pair Ui` and Ui,`+1 is separated by at least one t ∈ Si.

It is also useful to define the minimum number of contractions required to reduce
∆min to a given ∆ ∈ R, ∆ > 0, as

κ(∆) = min { p ∈ {0, 1, 2, . . .} : pow(θmin, p) ∆min ≤ ∆ },(6.3)

where θmin is defined in (3.14) and ∆min is defined in (3.10). It is straightforward to
see that

lim
∆→0

κ(∆) = +∞.(6.4)

Finally, for a given t ∈ T , we define the last successful time step up to, and
possibly including, t and the first successful time step after t as

ψi(t) = max { t̂ ∈ Si ∪ {0} : t̂ ≤ t } and(6.5)
φi(t) = min { t̂ ∈ Si : t < t̂ },(6.6)

respectively. We ensure that ψi(t) is always defined by setting it to zero in the case
that { t̂ ∈ Si : t̂ ≤ t } is empty. In the case that there is no t̂ ∈ Si satisfying t < t̂, then
φi(t) = +∞. Thus, ψi(·) : T → Si ∪ {0}, φi(·) : T → Si ∪ {+∞}, and ψi(t) < φi(t)
for all t ∈ T .

Using the above definitions, we can show that the lim sup of the number of time
steps between successes is going to infinity if a subsequence of the step-length control
parameters is going to zero.

Lemma 6.6. Suppose Sj is infinite for all j ∈ P. Then for all i ∈ P satisfying
(6.1), we have

lim sup
`→+∞

| Ui`| = +∞.(6.7)

Proof. Let i ∈ P be such that (6.1) holds. By the definition of the limit, for
any ∆∗ > 0, there exists t∗ ∈ T such that ∆t∗

i < ∆∗. Without loss of generality, we
assume t∗ ∈ Ui.

Then, using definitions (6.3) and (6.5) from above, there must be at least κ(∆∗)
time steps between t∗ and ψi(t∗) since (3.10) must hold for all t ∈ Si. Let `∗ be such
that t∗ ∈ Ui`∗ . Then

| Ui`∗ | > κ(∆∗).

From (6.4), the proof is complete.
19

We can now show that, in the case of an infinite number of successful time steps, a
subsequence of the step-length control parameters converges to zero for every process.

Lemma 6.7. Suppose Sj is infinite for all j ∈ P. Then for all j ∈ P,

lim inf
t→+∞

∆t
j = 0.

Proof. Suppose not. Then there exists an i ∈ P and ∆∗ > 0 such that

∆t
i ≥ ∆∗ for all t ∈ T .

Define

κ̄(∆∗) = min{p ∈ {0, 1, 2, . . .} : pow(θmax, p)∆max ≤ ∆∗},

where θmax is defined in (3.14) and ∆max is defined in (3.10). Then κ̄(∆∗) is the
maximum possible number of contractions needed to reduce ∆max to ∆∗. So the
maximum number of time steps between two successful time steps on process i is

max
`
| Ui`| ≤ η κ̄(∆∗),

where η is defined in (3.5) and Ui` is defined in (6.2).
Now consider k ∈ P, k 6= i. Since any successful point produced on process k is

considered on process i within γ time steps, i has a new minimum within η κ̄(∆∗) time
steps, and that new minimum is considered by process k within γ more time steps; so
the maximum number of time steps between successes on any process k, k 6= i, can
be at most

max
`
| Uk`| ≤ η κ̄(∆∗) + 2γ.(6.8)

However, Corollary 6.5 guarantees us that there exists i∗ such that (6.1) holds,
and our null hypothesis tells us i∗ 6= i. Further, Lemma 6.6 says (6.7) must hold for
i∗, but this contradicts (6.8) which also holds for k = i∗. Hence, the claim.

Finally, we show that each process has a subsequence of step-length control param-
eters that converges to zero—whether there are finitely or infinitely many successful
time steps.

Theorem 6.8. For every process j ∈ P, there exists a subsequence of the step-
length control parameters that goes to zero; that is,

lim inf
t→+∞

∆t
j = 0 for all j ∈ P.

Proof. If Si is infinite for some i ∈ P, then Sj is infinite for all j ∈ P by
Lemma 6.2, in which case the claim follows immediately from Lemma 6.7. Otherwise,
all Sj must be finite for all j ∈ P by Corollary 6.3, in which case the claim follows
from Lemma 6.1.

The following corollary says that, specifically, the subsequence of time steps at
which the step-length control parameters decrease forms a subset of the set of unsuc-
cessful time steps. This corollary is useful in the next section.

Corollary 6.9. The set Cj is infinite for all j ∈ P, and

lim inf
t→+∞
t∈Cj

∆t
j = 0 for all j ∈ P.(6.9)

Proof. This follows immediately from Theorem 6.8 since for each j ∈ P, ∆t
j ≥

∆min for all t ∈ Sj and (3.16) confirms that ∆t
j is unchanged for all t ∈ T \ Ti.

20

7. A common accumulation point that is also a stationary point. Our
next goal is to show that there exists a common accumulation point for all processes
and that this accumulation point has a zero gradient. To begin, we show that the
first process has a convergent subsequence of x’s corresponding to a subsequence of
step-length control parameters that goes to zero. (We specify the first process for
convenience, but we could pick any process.)

Lemma 7.1. There exists x̂ ∈ Rn and Ĉ1 ⊆ C1 such that

lim
t→+∞
t∈Ĉ1

∆t
1 = 0 and lim

t→+∞
t∈Ĉ1

xt1 = x̂.(7.1)

Proof. From Corollary 6.9, we know that C1 is infinite and that (6.9) holds, so
there exists C′1 ⊆ C1 such that

lim
t→+∞
t∈C′1

∆t
1 = 0.

Since the set { xt1 : t ∈ C′1 } is contained in the bounded set L(x0), we can extract an
infinite subset Ĉ1 ⊂ C′1 such that the subsequence converges; i.e., there exists x̂ in the
closure of L(x0) such that the limit in (7.1) holds.

Next, we show that the number of time steps between each t ∈ Ĉ1 and the most
recent success on process 1 goes to +∞.

Corollary 7.2. Let Ĉ1 be as defined in Lemma 7.1. Then there exists t∗ ∈ T
such that

κ(∆t
1) > η + 2γ for all t > t∗, t ∈ Ĉ1,

where κ(∆) is defined in (6.3), η is defined in (3.5), and γ is defined in (3.6).
Proof. This follows immediately from Lemma 7.1 and (6.4).
Another way to look at this corollary is to consider the step-length control param-

eters. By definition, κ(∆) returns the minimum number of contractions required to
reduce ∆min to a given value ∆. Consider t̂ > t∗ with t̂ ∈ Ĉ1. Corollary 7.2 then tells
us that κ(∆t

1) is at least η+2γ. The importance of this connection with ∆min becomes
clearer when we recall that (3.10) requires the ∆ associated with any successful time
step to satisfy ∆t

i ≥ ∆min. Therefore, we conclude that the minimum possible number
of contractions since the last successful time step, at time step ψ1(t̂), is η+ 2γ. Since
each contraction requires one function evaluation which, in turn, requires at least one
time step, the situation illustrated in Figure 7.1 must hold.

. . .
ψ1(t̂)

. . . -
t̂

-�
> η + 2γ

Fig. 7.1. Relative order of events on process 1 when t̂ ∈ Ĉ1 and t̂ > t∗.

The situation illustrated in Figure 7.1 applies only to process 1. Now we show
that for every t̂ ∈ Ĉ1, t̂ > t∗, on each of the other processes there is a corresponding
nonempty block of contiguous time steps that is devoid of successes. In particular,
the situation shown in Figure 7.2 holds. The relative order between the time steps
ψ1(t̂) + γ and t̂− γ follows from Corollary 7.2. In the next lemma, we show that the
relative order of the time steps ψi(t̂ − γ) and ψ1(t) + γ, as well as that of the time

21

. . .
ψi(t̂− γ)

. . .
ψ1(t̂) + γ

. . .
t̂− γ

. . . -
φi(ψ1(t̂) + γ)

-�
> η

Fig. 7.2. Relative order of events for any process i ∈ P, i 6= 1, when t̂ ∈ Ĉ1 and t̂ > t∗.

steps t̂ − γ and φi(ψ1(t̂) + γ), also must hold for any i ∈ P, i 6= 1, when t̂ ∈ Ĉ1 and
t̂ > t∗. The result we want then follows immediately.

Lemma 7.3. Let Ĉ1 be as defined in Lemma 7.1 and t∗ be as defined in Corol-
lary 7.2. Then for any t̂ ∈ Ĉ1 with t̂ > t∗ and any i ∈ P, i 6= 1, we have

ψi(t̂− γ) ≤ ψ1(t̂) + γ and(7.2)
t̂− γ ≤ φi(ψ1(t̂) + γ),(7.3)

where γ is defined in (3.6), ψi(·) is defined in (6.5), and φi(·) is defined in (6.6).
Further,

{ t ∈ T : ψ1(t̂) + γ < t < t̂− γ } ⊆ Ui,(7.4)

where Ui is defined in (6.2).
Proof. Suppose not. First consider the proof for (7.2). Since the point xψ1(t̂)

1 is
guaranteed to have been considered by process i by time step ψ1(t̂)+γ and ψ1(t̂)+γ <
ψi(t̂− γ) (from the null hypothesis), it must be true that

f(xψi(t̂−γ)
i) < f(xψ1(t̂)

1),(7.5)

or, equivalently for our purposes, that the tie-breaking condition in (3.11) is satisfied.
Likewise, the point xψi(t̂−γ)

i will be considered by process 1 at some time step t1 ≥
ψi(t̂− γ). By the null hypothesis, we have ψ1(t̂) < ψi(t̂− γ)− γ, so ψ1(t̂) < t1. On
the other hand, since the point xψi(t̂−γ)

i must be considered within γ time steps of
ψi(t̂− γ), we have t1 ≤ ψi(t̂− γ) + γ. By the definition of ψ, we conclude t1 ≤ t̂. So
we then have

ψ1(t̂) < t1 ≤ t̂.

From (7.5), either t1 ∈ S1, or there exists t2 ∈ S1 with ψ1(t̂) < t2 < t1. In either
case, we have a contradiction to the fact that ψ1(t̂) is the most recent successful time
step before t̂ on process 1.

We follow the same line of reasoning for (7.3). Since φi(ψ1(t̂)+γ) ∈ Si (note that
it is finite by the null hypothesis) and the point xψ1(t̂)

1 must have been considered by
time step ψ1(t̂) + γ, it must be true that

f(xφi(ψ1(t̂)+γ)
i) < f(xψ1(t̂)

1),(7.6)

or, equivalently for our purposes, that the tie-breaking condition in (3.11) is satisfied.
Likewise, the point xφi(ψ1(t̂)+γ)

i will be considered by process 1 by some time step t1
satisfying

ψ1(t̂) < φi(ψ1(t̂) + γ)− γ ≤ t1 ≤ φi(ψ1(t̂) + γ) + γ < t̂,

22

where the last part is from the null hypothesis and the first part is from the definition
of φ. From (7.6), either t1 ∈ S1, or there exists t2 ∈ S1 with ψ1(t̂) < t2 < t1. In
either case, we once again have a contradiction.

The proof for (7.4) follows immediately.
Using the previous lemma, we can construct a set of time steps Ĉi such that the

corresponding sequence of step-length control parameters converges to zero.
Lemma 7.4. Consider any i ∈ P, i 6= 1. Let Ĉ1 be as defined in Lemma 7.1 and

t∗ be as defined in Corollary 7.2. For any t̂ ∈ Ĉ1 with t̂ > t∗ define

χi(t̂) = max { t ∈ Ci : ψ1(t̂) + γ < t < t̂− γ },(7.7)

and

Ĉi = { χi(t̂) : t̂ > t∗, t̂ ∈ Ĉ1 }.

Then

lim
t→+∞
t∈Ĉi

∆t
i = 0.(7.8)

Proof. First, we are guaranteed that χi(t̂) in (7.7) is well-defined for the following
reasons. Appealing to Corollary 7.2, we know κ(∆t̂

1) > η + 2γ and so the interval
defined by (7.4) contains at least η time steps. Thus, one function evaluation must
start and finish on process i during that interval. Since, by Lemma 7.3, there are no
successes on i between ψ1(t̂) + γ and t̂− γ, there must be at least one contraction on
i in that interval, i.e., a t ∈ Ci. So χi(t̂) is well-defined. Thus Ĉi is also well-defined.

Next from Lemma 7.1 and (6.4), we know that

lim
t→+∞
t∈Ĉ1

κ(∆t
1) = +∞,

so it must also be the case that

lim
t→+∞
t∈Ĉ1

(t− γ)− (ψ1(t) + γ)
η

= +∞.

In other words, the number of contractions in the interval defined by (7.4) is tending
towards infinity. Therefore, (7.8) holds.

Finally, we conclude that all processes share a common accumulation point and
that such a point is a stationary point of f . This argument follows the same basic
lines as those seen in [3, 9] (for the case that the search directions are restricted to the
set D = {±ei, i = 1, · · · , n}), [11] (for the general case that D is a positive spanning
set), and, more recently, [8, 1, 4].

Theorem 7.5. Assume the function f in (1.1) is continuously differentiable on
the closure of L(x0). Then there exists x̂ ∈ Rn and, for each i ∈ P, there exists
Ĉi ⊂ Ci such that

lim
t→+∞
t∈Ĉi

∆t
i = 0 and lim

t→+∞
t∈Ĉi

xti = x̂.(7.9)

Furthermore,

lim
t→+∞
t∈Ĉi

∇f(xti) = 0.

23

Proof. By Lemma 7.1, we know that (7.9) holds for i = 1. By Lemma 7.4, we
know that for each i ∈ P, i 6= 1, we can construct Ĉi such that the limit on ∆t

i in
(7.9) holds. Further, note that for every t̂ ∈ Ĉi, we have

x
χi(t̂)
i = xt̂1,

where χi(t̂) is defined in (7.7). Thus,

{ xti : t ∈ Ĉi } ⊆ { xt1 : t ∈ Ĉ1 }.

So, the limit on xti given in (7.9) holds as well. Hence, the claim.
Now, for any t ∈ Ci, (3.15) and (3.16) give us

xti = xt−1
i and ∆t

i = θti∆
t−1
i .

Define the set B̂i = { t = t̂ − 1 : t̂ ∈ Ĉi }. Since θti is bounded below by θmin, (7.9)
ensures that

lim
t→+∞
t∈B̂i

∆t
i = 0.

If t̂ ∈ Ĉi this means that

f(xt̂−1
i) ≤ f(xt̂−1

i + ∆ t̂−1
i di).(7.10)

We rely here on the fact that even though the function evaluation that led to the
conclusion that t̂ ∈ Ĉi may have been initiated at some t < t̂ − 1, the update rules
(3.15) and (3.16) ensure that xti = xt−1

i and ∆t
i = ∆t−1

i for any t ∈ T \ Ti. Since
(7.10) holds for any t̂ ∈ Ĉi, this is equivalent to saying that for any t ∈ B̂i

f(xti) ≤ f(xti + ∆t
idi).

The mean value theorem then gives us

f(xti) ≤ f(xti) + ∆t
i∇f(xti + αti∆

t
idi)

T di,

for some αti ∈ [0, 1]. Therefore,

0 ≤ ∇f(xti + αti∆
t
idi)

T di, t ∈ B̂i.

Taking the limits as t→∞, we get

0 ≤ ∇f(x̂)T di for all i ∈ P.(7.11)

Since the vectors in D are assumed to form a positive spanning set for Rn, (7.11)
implies that ∇f(x̂) = 0.

8. Conclusions. When developing this analysis, we tried to keep the number
of assumptions made to a minimum. Our first priority was to assure that under
standard assumptions, the version of APPS that we had implemented could be shown
to be globally convergent. That said, there are some further relaxations we could
have made. For instance, in (3.2) we assumed, for convenience, that all processes

24

started with the same initial iterate x0 and the same initial value ∆0 for the step-
length control parameter. While we could relax (3.2), to do so would introduce a
level of complication to the analysis that does not appear to add appreciably to the
fundamental result.

An extension of more obvious practical import is to allow the set of search direc-
tions to change over time. In this paper, we assume that the set of search directions
is fixed. Earlier pattern search results [10] make clear that this condition can be
relaxed. There is certainly value in doing so. In particular, one of the motivations
for APPS was to devise algorithms that could recover from the failure of a process.
Since all we require, in the end, is that (7.11) holds for enough vectors in D to form
a positive basis for Rn, we have some flexibility in both the implementation and the
analysis. In the current implementation of APPS, we ignore the failure of a process
so long as the search directions contained on the active processes continue to form a
positive spanning set. If we experience enough process failures that this condition no
longer holds, we restart enough processes so that the condition is once again satisfied.
The minor modifications required to the analysis are so obvious, we simply note them
here.

A more ambitious option, along the lines of related ideas proposed in [11, 8, 4],
would be to actually change the set of search directions during the course of the
search, rather than working with some subset of a fixed set of directions chosen at
the start of the search. To do so requires some modification of the mechanism used
to control the length of the step. Our analysis relies on the algebraic structure of the
iterates. This can be relaxed, either be requiring ∆ to be nonincreasing [11, 4] or by
introducing a sufficient decrease condition to determine the success of a step [8], in
lieu of the simple decrease conditions in (3.7) and (3.11) that we use here.

We close with the observation that we can reduce the general framework presented
here to a special case that is traditional pattern search. (This is what motivated us
to allow 0 ≤ γ so that communication can be “instantaneous,” as it would be in the
sequential case.) The difference here is that we have introduced the bounds given in
(3.10) for t ∈ Si. These bounds are necessary for our analysis (e.g., in the proofs
of Lemma 6.7 and Corollary 6.9 or for the definition of κ(∆) in (6.3), which plays a
role in the proofs of Lemma 6.6, Corollary 7.2, and Lemma 7.4). Prior definitions of
pattern search did not require the enforcement of (3.10) since the synchronization of
the updates to ∆ suffices without the imposition of these bounds on updates made
after a successful step.

25

REFERENCES

[1] C. Audet and J. E. Dennis, Jr., Pattern search algorithms for mixed variable programming,
SIAM Journal on Optimization, 11 (2000), pp. 573–594.

[2] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[3] J. Céa, Optimisation: Théorie et algorithmes, Dunod, Paris, 1971.
[4] I. D. Coope and C. J. Price, On the convergence of grid-based methods for unconstrained

optimization, SIAM Journal on Optimization, 11 (2001), pp. 859–869.
[5] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel pattern search for

nonlinear optimization, SIAM J. Scientific Computing, 23 (2001), pp. 134–156.
[6] T. G. Kolda and V. J. Torczon, Understanding asynchronous parallel pattern search, tech.

rep., Sandia National Laboratory, 2001.
[7] R. M. Lewis and V. Torczon, Rank ordering and positive bases in pattern search algorithms,

Tech. Rep. TR 96-71, Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, Virginia, 1996.

[8] S. Lucidi and M. Sciandrone, On the global convergence of derivative free methods for un-
constrained optimization, Tech. Rep. 18-96, DIS, Universitá di Roma “La Sapienza”, 1996.
Submitted to SIAM Journal on Optimization.

[9] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press,
New York, 1971.

[10] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
pp. 1–25.

[11] Y. Wen-ci, Positive basis and a class of direct search techniques, Scientia Sinica, Special Issue
of Mathematics, 1 (1979), pp. 53–67.

26

	ABSTRACT
	1. Introduction.
	2. PPS.
	3. APPS.
	3.1. Assumptions.
	3.2. Successful time steps.
	3.3. Unsuccessful time steps.
	3.4. Multiple decisions in one time step.
	3.5. Identifying the source of a change.
	3.6. The de nitions for xt and t i.

	4. The algebraic structure of the iterates.
	5. The subset of time steps at which changes occur is in nite.
	6. A subsequence of the step-length control parameters goes to zero.
	7. A common accumulation point that is also a stationary point.
	8. Conclusions.
	REFERENCES

